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1 Introduction 

The Data Management Plan (DMP) document already released describes the architecture and plan for developing 

the data management framework needed by the Carbon Capture Simulation Initiative (CCSI) toolset. The CCSI 

toolset includes: experimental data, physical property methods and parameters, empirical correlations, validation 

data set, models, simulation inputs and outputs, reduced-order models, cost models, risk models, uncertainty 

estimation, etc. Each tool in the toolset requires and generates data, and the data management system organizes 

and stores the data. The data management framework will be driven by end-users and interact with CCSI 

workflow components such as Turbine. This document reports on the technology survey completed as the first 

step in the Data Management Plan. It also provides recommendations for a path forward based on the survey 

results. 

1.1 CCSI Project Overview 

The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and 

academic institutions that will develop and deploy state-of-the-art computational modeling and simulation tools to 

accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, 

and ultimately the widespread deployment to hundreds of power plants. By developing the CCSI Toolset, a 

comprehensive, integrated suite of validated science-based computational models, this initiative will provide 

simulation tools that will increase confidence in designs, thereby reducing the risk associated with incorporating 

multiple innovative technologies into new carbon capture solutions. The scientific underpinnings encoded into the 

suite of models will also ensure that learning will be maximized from successive technology generations.  

The CCSI Elements are responsible for the design, implementation, verification and validation of simulation 

software codes that support Carbon Capture Simulations which allow new concepts to move from the lab to 

power plant quickly and at low cost.  

1.2 Background 

The Data Management Framework must interact with CCSI toolset and commercial tools and technologies.  This 

section describes the tools and technologies deemed relevant, due to alignment with CCSI needs, adoption by 

current CCSI collaborators, or both.  

 

1.3 Data Management Requirements 

The CCSI data management system has the following requirements: 

 Supports all existing types of CCSI related data and is expandable to handle other data as needed 

 Stores provenance information when available 

 Provides versioning of stored information and storage of past versions 

 Allows user to store data as files when desired (outside the data management system) 

 Able to extract data from the data management system in its original data format (i.e., one of the 

supported data model formats) 

 Provides programmatic interfaces to allow tools to store and retrieve data directly 

 Deployable as a system to allow industry partners to run their own data management system 

 Able to configure multiple, independent data management system instances at the same industry 

 Supports authentication and authorization of users and access control for information and files 

 Provides a search interface to help find data in the data management system 

 Easy to install and configure 
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In the situation where the data management system is being installed to interact with an industry partner’s own 

data management system, some custom configuration and integration will be required. Our requirement is to 

provide well-documented interfaces and examples to show how the CCSI Data Management System can be 

connected to a third-party system. We will investigate and leverage open standards for authentication such as 

OpenID to enable the possibility for reusing an industry partner’s preexisting authentication systems. Such 

capabilities will require additional customization. 

2 Survey of Technologies 

 

The data management system is designed to provide the persistent storage of simulation versions, 

results, decisions made, and configurations tried. The CCSI data model that has already been published, 

defines the types and formats of the data in the CCSI system. The data management system will be 

composed of several parts (see Figure below). 

CCSI Data Management System Components 

The following sections provide survey results for each of the technologies considered for inclusion in 

the CCSI data management framework. 

2.1 Velo 

Velo is based on Alfresco 3.4.c (released in December 2010) with some additional features written at the 

Pacific Northwest National Laboratory (PNNL). Currently, an installation package is available for Velo 

as the Reveal Server installation from the CCSI software downloads page. 

2.1.1 Installation 

The installation of Velo from start to a working server took about 2 weeks of calendar time. The 

installation wasn't a full time effort, and I was working on other projects at the same time. I required 

help from PNNL on 4 issues, and each issue was resolved with an exchange of emails. Most issues were 

resolved within 24 hours of reporting them. 

2.1.2 Capabilities 

After getting Velo installed, I was able to use the web interface to store and download files. However, 

most of the functionality that's apparent is based on Alfreco. I requested information about how to use 

the extra features provided by Velo – for example developer documentation or help on how to access the 

Velo-specific features of the system, and the PNNL staff were unable to help me get access to that kind 

of material, at least during the period of time I had available to evaluate Velo. At this point, it seems that 
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they have the infrastructure to support Velo as part of the Reveal software package but not as a tool for 

developing the CCSI data management framework. 

Alfresco's capabilities will be described below in the evaluation of Alfresco. 

2.1.3 Documentation & Web Presence 

There is no significant web presence for Velo. Searching for “Velo” on the www.pnl.gov website 

produces 24 hits (based on web content May 2013). Many of these hits are redundant references to a 

Velo paper at ACM. Velo has a source code repository and bug tracking system, but neither is publicly 

accessible.  There is no public project page or significant documentation available currently. 

2.1.4 License 

Velo is available to CCSI participants under the CCSI T&E license. The licensing of the Alfresco 

component of Velo is covered below. 

2.1.5 Assessment 

Based on presentations, Velo has significant capabilities. However, these capabilities do not appear to 

have sufficient developer documentation to be useful outside of PNNL. The capabilities that are readily 

apparent are those of Alfresco. Despite being a tool that supports several PNNL projects, the tool has no 

web presence, documentation, or bug tracking system. In summary, it does not seem mature enough at 

this point to serve as a key component of the CCSI document management framework. 

 

2.2 Alfresco Community Edition 4.2.c (December 2012) 

This is the latest edition of the Alfresco  

2.2.1 Documentation & Web Presence 

Alfresco is supported by alfresco.com. Alfresco.com has information about a commercially supported 

version of Alfresco that can be hosted on your machines or on cloud resources (presumably internet 

accessible systems managed and supported by Alfresco). Alfresco.com has training, end-user 

documentation, developer documentation, developer blogs, discussion forums, and software downloads. 

2.2.2 Installation 

The Alfresco community release is available for download from 

www.alfresco.com/products/community 

The 469MB installation comes with Java, PostgreSQL, SharePoint protocol support, Google Docs 

integration, and LibreOffice. I configured the system to use MySQL (a non-standard option), and the 

whole operation took less than an hour even with some custom configurations. 

2.2.3 Capabilities 

Alfresco provides a content management system with file storage, meta-data storage, and search 

capabilities. File storage can be managed through a web-based interface, ftp interface, CIFS server 

(shared content appears as a shared drive in a Windows environment), NFS server (network file system 

for Linux/Unix systems), SharePoint, and other approaches. The system can be configured to maintain 

version control for every managed file. Hence, every new version of a file is retained by the system. 
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The system has the ability to perform some file conversion operations. For example, it can convert a 

Microsoft Word file to a PDF, and its advanced search can search the contents of some file types – not 

just the meta-data.  

Alfresco has work flows that can assign tasks to people. It has a review work flow built-in, and custom 

work flows can be defined. 

2.2.4 License 

Alfresco is licensed under the Lesser Gnu Public License (LGPL) version 3. Details of their licensing 

are covered at this web page: http://wiki.alfresco.com/wiki/Open_Source_Licensing. They are willing to 

discuss providing Alfresco under different licensing terms including commercial or alternative free 

software licenses. 

2.2.5 Assessment 

Alfresco is a very mature, well-supported open-source project. It has both commercial support and 

community support through typical online systems. It provides end-user, developer and administrator 

documentation. It provides a sufficient backbone for the CCSI data management framework; we expect  

to be able to add connections between source files and output files corresponding to a particular run 

either through explicit relationships or using an additional metadata file generated during the simulation. 

2.3 Apache Jackrabbit 2.6.1 

2.3.1 Documentation & Web presence 

Apache Jackrabbit is a fully conforming implementation of the Content Repository for Java Technology 

API (JSR 170 and 283). It is a hierarchical content store with versioning, transactions, and support for a 

variety of information types. Its specifications were developed and are part of the Java Community 

Process (http://jcp.org/en/jsr/detail?id=170 and http://jcp.org/en/jsr/detail?id=283). The Apache 

Jackrabbit implementation of these specifications is covered by the http://jackrabbit.apache.org/ website. 

The Jackrabbit website provides comprehensive information and user support services. The 

documentation includes installation information, getting started information, and detailed developer 

documentation. The user/developer support includes mailing lists, an issue tracker, output of their 

Hudson continuous integration testing, and details on how to contribute back to Jackrabbit. 

2.3.2 Installation 

The downloads page, http://jackrabbit.apache.org/downloads.html, provides multiple ways to use 

Jackrabbit. I evaluated the Jackrabbit standalone JAR distribution which is simple to download and use 

with the OpenJDK 1.7.1 Java virtual machine. In this mode, it starts a webserver on port 8080. 

2.3.3 Capabilities 

The standalone Jackrabbit server provides two main 

methods access to the content repository. First, the 

content is accessible via the Web Distributed 

Authoring and Versioning (WebDAV) protocol. 

Second, the content can be accessed via the Java 

Content Repository API (JCR API). 

Using the WebDAV protocol, operating systems 

such as Windows, Linux, and Mac OS X can treat 

the content repository as a shared network 

Illustration 1: Accessing Apache Jackrabbit 

content repository via WebDAV protocol and the 

Chrome web browser. 
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filesystem. By making the content repository behave like a network filesystem, normal applications can 

access the content without specialize network interfaces. Clients can also access the content repository 

by a bare bones web interface. 

The JCR API is a collection of Java interfaces to the content repository. The API can be used locally or 

remotely using remote method invocation (RMI). For local use, the CCSI code would need to be running 

in the same process as the Jackrabbit server, which seems impractical. If CCSI were to adopt Jackrabbit 

and use the Java API, we would primarily use RMI. In this approach, Java API commands are executed 

transparently across the network. For example, a Java program running on the end-user's desktop would 

initiate Java method calls that ultimately get executed on the Jackrabbit server. 

2.3.4 License 

Apache Jackrabbit releases are available under the Apache License, Version 2.0, see 

http://jackrabbit.apache.org/downloads.html and http://www.apache.org/licenses/LICENSE-2.0. 

2.3.5 Assessment 

Overall, Apache Jackrabbit seems like a solid system with a small set of fundamental features that 

enable it to work smoothly in a variety of environments. It doesn't support as many methods of file 

sharing as Alfresco; however, its WebDAV interface allows it to appear as a file system in most modern 

operating systems. It's worth noting that Alfresco also has a WebDAV interface and JCR API support. 

There are several areas where Jackrabbit is less capable than Alfresco. Alfresco provides a rich web 

client to access and modify the content repository where Jackrabbit provides a minimalist WebDAV 

interface. Alfresco provides multi-language programming access to its content store via SOAP and the 

JCR API where Jackrabbit only supports languages other than Java through the WebDAV API. 

Jackrabbit is very Java focused, and Alfresco provides multiple access paths. 

In comparison, Jackrabbit is a smaller and simpler system. Alfresco tends to support multiple ways of 

doing everything, and Jackrabbit supports one or two. This ultimately makes Alfresco a larger, more 

complex system, and Jackrabbit is in comparison smaller. 

The support for Jackrabbit seems primarily community based. Based on the amount of web content, it 

appears to have a sufficient community to provide typical levels of open-source support. 

2.4 HDF5 1.8.11 

HDF5 is the Hierarchical Data Format 5, and it is the de facto file format standard for supercomputing 

data. It provides a high-performance library to read, write or modify HDF5 files in parallel onto a 

parallel file system. HDF5 is a very flexible, extensible file format, so frequently, communities will 

establish standards for HDF5 in their field. For example, the climate community established the NetCDF 

file format as their community standard, and starting with NetCDF-2, the NetCDF standard has used 

HDF as its underlying file format. Due to its role in the community, many tools have been created to 

process, analyze, and visualize HDF5 files. 

2.4.1 Documentation & Web Presence 

The HDF Group provides a website for HDF5, http://www.hdfgroup.org/HDF5/. They provide 

documentation for the basic HDF5 API, HDF5 tools, and the HDF5 specification. The HDF5 User's 

Guide is 352 pages long, and the reference manual is 798 pages. There are also shorter tutorials to get 

users started using HDF5.  
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The HDF Group provides an email help desk help@hdfgroup.org. There are two mailing lists as well: 

one for announcements and one for community discussions. In addition, the HDF Group provides 

commercial support for those who wish to purchase it. They also provide training courses for a fee. 

HDF5 installation packages are provided for Linux and Windows. For other systems, the source code is 

available. Most high-performance computing centers will have HDF5 pre-installed.  

The HDF5 library can be accessed from multiple programming languages. The HDF Group provides 

documentation for the C, Fortran, C++, and Java interfaces to HDF5. There are third-party libraries to 

access HDF5 from Python (www.h5py.org). 

2.4.2 Installation 

Most major Linux distributions have precompiled HDF5 packages available. For example on a Red Hat 

system, you simply “yum install hdf5” or “yum install hdf5-openmpi”. Windows binaries or sources are 

available on the HDF Group site. 

If you have a bizarre machine, you can download the HDF5 sources and build it yourself. It does use 

two 3rd party libraries which may also need to be installed by hand (szip 2.1 and zlib). 

2.4.3 Capabilities 

HDF5 is an extensible file format and a library for accessing that file format. As its name suggests, the 

format is hierarchical – meaning that each file contains a directory structure of information. It is 

optimized for storing arrays, matrices, or high-dimensional arrays of integers and floating point 

numbers. Its design allows for significant meta-data. It can be used on serial or parallel computers, and 

many tools are written to support HDF5. 

2.4.4 License 

HDF5 is licensed under a BSD-style open-source license. Details of the licensing terms are covered 

here: http://www.hdfgroup.org/HDF5/doc/Copyright.html 

2.4.5 Assessment 

HDF5 is the community standard for large data storage, and it is the leading file format for HPC 

computing. 

2.5 JSON 

JSON (pronounced jay-sun) is a text-based file format for human- and machine-readable data 

interchange. Its name comes from JavaScript Object Notation. It is a simple yet powerful file format that 

can store hierarchical information. As its name suggests, JSON was originally design for the web; 

however, its simple, clear syntax led to it being adopted elsewhere. The CCSI Turbine project uses 

JSON for its configuration file format. 

2.5.1 Documentation & Web Presence 

JSON was originally documented by RFC-4627, and there is also a homepage for the file format, 

http://www.json.org/. There are libraries supporting JSON in numerous programming languages 

including C, C++, C#, Python, Java, JavaScript, and PHP. The homepage has links to these libraries and 

also JSON tools. 

2.5.2 Installation 

Most Linux distributions will have numerous JSON parsers prepackaged for installation. A JSON 

encoder and decoder is part of the Standard Python library since version 2.6. 
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2.5.3 Capabilities 

JSON is a lightweight, hierarchical file format for data interchange. It can store information in an object-

oriented way, and it also has support for array data. As a text-based file format, it is optimized for 

readability and interoperability rather than performance and compactness. 

In many ways, it's similar to XML; however, it tends to be shorter than XML. The file format is also 

simpler than XML, so its parsers tend to be smaller and faster than corresponding XML parsers. 

Like XML, JSON assumes that files are in Unicode, so it can store internationalized information. JSON 

is already used as the configuration file format for the CCSI Turbine code. 

JSON Schema is a way of specifying what information a JSON file should contain. There are tools to 

verify that an JSON file validates against a particular JSON schema. A JSON Schema specification is 

itself a JSON file. 

2.5.4 License 

JSON is an open standard with multiple, independent implementations. For most languages, an open 

source parser implementation is available. In particular, since Python 2.6 a json parser has been 

available as part of the Python Standard Library 

(http://www.python.org/download/releases/2.6.8/license/).  There are 24 implementations of json for 

Java, 11 for C++, and 16 for C.  

2.5.5 Assessment 

JSON is a simple, terse file format that balances the needs of human readability with simple parsing. It's 

a good choice for small data and configuration information. As a plaintext format, it's not optimized for 

large data or out-of-core processing. 

2.6 XML 

XML is a text-based file format that evolved as a generalization of HTML. Its initials come from 

eXtensible Markup Language, and it's meant to be human- and machine-readable. XML is meant to be a 

framework on which other file formats are build. For example, XHTML is an XML compatible version 

of HTML. 

2.6.1 Documentation & Web Presence 

XML has an excellent web presence. There are numerous sources for XML documentation, references, 

tutorials, and parsers. There are books on XML and books on uses of XML. 

2.6.2 Installation 

There are numerous XML parsers that are readily available and installable. 

2.6.3 Capabilities 

XML is an extensible, hierarchical file format. It's able to encode almost any type of information, and it 

is particular useful for data interchange between independently developed programs. XML is used for 

everything from exchanging order and inventory information to remote method invocation. 

XML has two mechanisms for specifying what a valid document must contain. There is a Document 

Type Definition (DTD), and the XML Schema was introduced as a successor to DTDs. XML Schemas 

are the more powerful of the two specification languages. 

XML is an international file format using Unicode as its character set. 



12 

 

2.6.4 License 

XML is defined by the XML 1.0 Specification produced by the W3C. It is an open standard, and there 

are numerous open source XML parser implementations. XML parsers are available for practically 

every computer language. Apache Xerces provides C++, Java, and Perl XML parsers under the Apache 

public license v2.0 (http://xerces.apache.org/xerces-c/index.html). Python has included the expat parser 

as part of its standard library since Python 2.0. 

2.6.5 Assessment 

XML is a very popular standard in desktop and business computing. The main criticisms of XML are 

that it's verbose and complex. XML has a more elaborate syntax for opening and closing hierarchical 

elements which leads to XML files being long. 

In comparison to JSON, the XML file format is much more complex. An XML parser, need to be able to 

parse XML and DTDs. This makes XML parsers more complex and makes XML parsing slower. 

3 Recommendations 

Based on the evaluation of these technologies, I recommend that CCSI adopt Alfresco as its data storage 

engine for the data management framework. It supports rich web client access, numerous file system 

access methods, and methods for programs to interact with the system. It's supported by a large open 

source community and a commercial entity. 

For programs that do not already have a data format for their large-scale data, HDF5 is the 

recommended file format for data storage. We should adapt a common layout for CCSI-related HDF5 

files, so we store data and meta-data in a consistent way.  

We recognize that some programs have an internal, perhaps proprietary file format that is already 

supported. Our data management framework can support these files, but they will be opaque to the data 

management framework. We will not be able to do searching based on the file contents. 

For configuration files, we recommend adopting JSON. 

 

 


